Human umbilical cord-derived mesenchymal stromal cells differentiate into functional Schwann cells that sustain peripheral nerve regeneration.

نویسندگان

  • Dai Matsuse
  • Masaaki Kitada
  • Misaki Kohama
  • Kouki Nishikawa
  • Hideki Makinoshima
  • Shohei Wakao
  • Yoshinori Fujiyoshi
  • Toshio Heike
  • Tatsutoshi Nakahata
  • Hidenori Akutsu
  • Akihiro Umezawa
  • Hideo Harigae
  • Jun-ichi Kira
  • Mari Dezawa
چکیده

Human umbilical cord-derived mesenchymal stromal cells (UC-MSCs) that are available from cell banks can be induced to differentiate into various cell types, thereby making them practical potential sources for cell-based therapies. In injured peripheral nerves, Schwann cells (SCs) contribute to functional recovery by supporting axonal regeneration and myelin reconstruction. Here, we first demonstrate a system to induce UC-MSCs to differentiate into cells with SC properties (UC-SCs) by treatment with β-mercaptoethanol followed by retinoic acid and a set of specific cytokines. The UC-SCs are morphologically similar to SCs and express SC markers, including P0, as assessed by immunocytochemistry and reverse transcription polymerase chain reaction. Transplantation of UC-SCs into transected sciatic nerves in adult rats enhanced nerve regeneration. The effectiveness of UC-SCs for axonal regeneration was comparable to that of authentic human SCs based on histological criteria and functional recovery. Immunohistochemistry and immunoelectron microscopy also demonstrated myelination of regenerated axons by UC-SCs. These findings indicate that cells with SC properties and with the ability to support axonal regeneration and reconstruct myelin can be successfully induced from UC-MSCs to promote functional recovery after peripheral nerve injury. This system may be applicable for the development of cell-based therapies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mesenchymal Stem Cells and Umbilical Cord as Sources for Schwann Cell Differentiation: their Potential in Peripheral Nerve Repair

Schwann cells are important components of the peripheral glia that form myelin, serving as the microenvironment of nerve fibers in the peripheral nervous system (PNS). Damage to the PNS induces the differentiation and activation of Schwann cells to produce factors that strongly promote axonal regrowth, and subsequently contribute to remyelination, which is crucial for the recovery of function. ...

متن کامل

Human Olfactory Ecto-mesenchymal Stem Cells Displaying Schwann-Cell-Like Phenotypes and Promoting Neurite Outgrowth in Vitro

Strategies of Schwann cell (SC) transplantation to regenerate the peripheral nerve injury involves many limitations. Stem cells can be used as alternative cell sources for differentiation into SCs. Given the high potential of neural crest-derived stem cells for the generation of multiple cell lineages, in this research, we considered whether olfactory ecto-mesenchymal stem cells (OE-MSCs) derive...

متن کامل

Differentiation of Umbilical Cord Lining Membrane-Derived Mesenchymal Stem Cells into Endothelial-Like Cells

Background: Stem cell therapy for the treatment of vascular-related diseases through functional revascularization is one of the most important research areas in tissue engineering. The aim of this study was to investigate the in vitro differentiation of umbilical CL-MSC into endothelial lineage cells. Methods: In this study, isolated cells were characterized for expression of MSC-specific marke...

متن کامل

Extracellular matrix from human umbilical cord-derived mesenchymal stem cells as a scaffold for peripheral nerve regeneration

The extracellular matrix, which includes collagens, laminin, or fibronectin, plays an important role in peripheral nerve regeneration. Recently, a Schwann cell-derived extracellular matrix with classical biomaterial was used to mimic the neural niche. However, extensive clinical use of Schwann cells remains limited because of the limited origin, loss of an autologous nerve, and extended in vitr...

متن کامل

A New Two Step Induction Protocol for Neural Differentiation of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells

Background: In this study, we examined a new two step induction protocol for improving the differentiation of human umbilical cord blood-derived mesenchymal stem cells into neural progenitor cells. Materials and Methods: Human umbilical cord blood-derived mesenchymal stem cells were first cultured in Dulbecco’s modified eagle medium supplemented with 10% fetal bovine serum in a humidified incu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neuropathology and experimental neurology

دوره 69 9  شماره 

صفحات  -

تاریخ انتشار 2010